
Intel® Advisor
Vectorization Optimization and Thread Prototyping

1

Munara Tolubaeva
Software Technical Consulting Engineer

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

2

Have you:

§  Tried threading an app, but seen little
performance benefit?

§  Hit a “scalability barrier”? Performance
gains level off as you add cores?

§  Delayed a release that adds threading
because of synchronization errors?

Breakthrough for threading design:

§  Quickly prototype multiple options

§  Project scaling on larger systems

§  Find synchronization errors before
implementing threading

§  Separate design and implementation -
Design without disrupting development

3

Data-Driven Threading Design
Intel® Advisor – Thread Prototyping

http://intel.ly/advisor-xe

Add Parallelism with Less Effort,
Less Risk and More Impact

Have you:
§  Recompiled with AVX2, but seen little benefit?

§  Wondered where to start adding vectorization?

§  Recoded intrinsics for each new architecture?

§  Struggled with cryptic compiler vectorization messages?

Breakthrough for vectorization design
§  What vectorization will pay off the most?

§  What is blocking vectorization and why?

§  Are my loops vector friendly?

§  Will reorganizing data increase performance?

§  Is it safe to just use pragma simd?

4

Data Driven Vectorization Design
Intel® Advisor – Vectorization Advisor

More Performance
Fewer Machine Dependencies

5

Factors that prevent Vectorizing your code
1. Loop-carried dependencies

for (i = 1; i < nx; i++) {
 x = x0 + i * h;
 sumx = sumx + func(x, y, xp);
}

2. Function calls (incl. indirect)

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)
{
 for(int i = 0; i < x->bound; i++)
 a[i] = 0;
}

3. Loop structure, boundary condition

4 Outer vs. inner loops

1.A Pointer aliasing (compiler-specific)

for(i = 0; i <= MAX; i++) {
 for(j = 0; j <= MAX; j++) {
 D[j][i] += 1;
 }
}

void scale(int *a, int *b)
{
 for (int i = 0; i < 1000; i++)

 b[i] = z * a[i];
}

DO I = 1, N
 A(I + M) = A(I) + B(I)
ENDDO

And others……

5. Cost-benefit (compiler specific..)

6

Factors that slow-down your Vectorized code

void doit(int *a, int *b, int
unknown_small_value)
{
 for(int i = 0; i <
unknown_small_value; i++)
 a[i] = z*b[i];
}

2. Small trip counts not multiple of VL

3. Branchy codes, outer vs. inner loops

1.B Memory sub-system Latency / Throughput

for(i = 0; i <= MAX; i++) {
 if (D[i] < N)
 do_this(D);
 else if (D[i] > M)
 do_that();
 //…

 }

void scale(int *a, int *b)
{
 for (int i = 0; i < VERY_BIG; i++)

 c[i] = z * a[i][j];
 b[i] = z * a[i];

}

5. MANY others: spill/fill, fp accuracy trade-offs,
FMA, DIV/SQRT, Unrolling, even AVX throttling..

1.A. Indirect memory access
for (i=0; i<N; i++)

 A[B[i]] = C[i]*D[i]

7

Intel® Advisor helps you increase performance!
Recommended methodology

8

5 Steps to Efficient Vectorization - Vector Advisor
(part of Intel® Advisor, Parallel Studio, Cluster Studio 2016)

5.	Memory	Access	Pa/erns	Analysis	

2.	Guidance:	detect	problem	and	recommend	how	to	
fix	it	

	

1. Compiler diagnostics + Performance Data + SIMD
efficiency information

	

4.	Loop-Carried	Dependency	Analysis	

3. “Accurate” Trip Counts + FLOPs: understand
utilization, parallelism granularity & overheads

	

9

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

	

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

10

Filter by which
loops are

vectorized!

Focus on
hot loops

What
vectorization
issues do I

have?

How efficient is
the code?

What prevents
vectorization?

Which Vector
instructions are

being use?

Trip Counts

11

All the data in one place

Top
Down Source Assembly Recommendations Compiler

Diagnostics

Background on loop vectorization

12

A typical vectorized loop consists of

Main vector body

•  Fastest among the three!

Optional peel part

•  Used for the unaligned references in your loop. Uses Scalar or slower vector

Remainder part

•  Due to the number of iterations (trip count) not being divisible by vector length.
Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder

•  Make sure you Align your data!

•  Make the number of iterations divisible by the vector length!

This is where we want our loops
to be executing!

13

Efficiently Vectorize your code
Intel Advisor – Vectorization Advisor

14

2.	Guidance:	detect	problem	and	
recommend	how	to	fix	it	

	

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

	

Click to see recommendation

Advisor shows hints to move
iterations to vector body.

Get Specific Advice For Improving Vectorization

Intel® Advisor – Vectorization Advisor

16

2.	Guidance:	detect	problem	and	
recommend	how	to	fix	it	

	

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

	

3. “Accurate” Trip Counts + FLOPs: understand
utilization, parallelism granularity & overheads

	

17

Critical Data Made Easy
Loop Trip Counts

Check actual
trip counts

Loop is iterating
101 times but

called > million
times

Since the loop is
called so many

times it would be
a big win if we
can get it to
vectorize.

Knowing the time spent
in a loop is not enough!

18

2.	Guidance:	detect	problem	and	
recommend	how	to	fix	it	

	

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

	

3. “Accurate” Trip Counts + FLOPs: understand
utilization, parallelism granularity & overheads

	

4.	Loop-Carried	Dependency	Analysis	

19

Is It Safe to Vectorize?
Loop-carried dependencies analysis verifies correctness

Vector Dependence
prevents

Vectorization!

Select loop for
Correct

Analysis and
press play!

Data Dependencies – Tough Problem #1
Is it safe to force the compiler to vectorize?

Data dependencies
 for (i=0;i<N;i++) // Loop carried dependencies!

 A[i] = A[i-1]*С[i];// Need the ability to check if it

 // it is safe to force the compiler

 // the compiler to vectorize!

20

Correctness – Is It Safe to Vectorize?
Loop-carried dependencies analysis

21

Received recommendations to force
vectorization of a loop:

1.  Mark-up the loop and check for the
presence of REAL dependencies

2.  Explore dependencies in more
details with code snippets

In this example 3 dependencies were
detected

•  RAW – Read After Write

•  WAR – Write After Read

•  WAW – Write After Write

This is NOT a good
candidate to force
vectorization!

Detected
dependencies

Source lines with Read and Write
accesses detected

22

2.	Guidance:	detect	problem	and	
recommend	how	to	fix	it	

	

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

	

3. “Accurate” Trip Counts + FLOPs: understand
utilization, parallelism granularity & overheads

	

4.	Loop-Carried	Dependency	Analysis	 5.	Memory	Access	Pa/erns	Analysis	

§  Non-unit strided access to arrays

 for (i=0;i<N;i+=2) //Incrementing “i” by 2 is not unit stride

 //We need a way to check how we are

 //accessing memory.

§  Indirect reference in a loop

 for (i=0;i<N;i++)

 A[B[i]] = C[i]*D[i];//We have to decode B[i] to find out
 //which element of A to reference

23

Non-Contiguous Memory – Tough Problem #2
Potential to vectorize but may be inefficient

Run Memory Access Patterns analysis,
just to check how memory is used in the
loop and the called function

Select loops of interest

Improve Vectorization
Memory Access pattern analysis

All memory accesses are uniform, with zero unit stride, so
the same data is read in each iteration
We can therefore declare this function using the omp
syntax: pragma	omp	declare	simd	uniform(x0

Find vector optimization opportunities
Memory Access pattern analysis

Stride distribution

26

1.  Cache aware Roofline

2.  Improved Trip Counts and FLOPS

1.  Call Count metric for functions

3.  Filtering by module

4.  Re-finalization

5.  Dynamic Instruction

Mixes

1.  -report survey -mix

Advisor 2017 Update 2 Features

27

Vectorized loops with high efficiency

Are we done??..

28

Vectorized loops with high efficiency

…It depends.
 If code is not SIMD bound,
 then Speedup <= Vectorization Gain

 In addition(instead of) VPU-bound
 code could be Memory Bound

29

Am I bound by VPU/CPU or by Memory?
Quick and Dirty check with Survey Loop Analytics.

The types of instructions in your loop will be a
rough indicator of whether your are doing more
memory or computational work

30

Am I bound by VPU/CPU or by Memory?
 ROOFLINE ANALYSIS

31

Roofline Automation in Intel®
(Vectorization) Advisor 2017

•  Interactive mapping to source and performance profile

•  Synergy between Vector Advisor and Roofline: FMA example

•  Customizable chart

Each Dot
represents loop or function in
YOUR APPLICATION (profiled)

Each Roof (slope)
Gives peak CPU/Memory throughput
of your PLATFORM (benchmarked)

32

#FLOP
Binary Instrumentation
Does not rely on CPU
counters

Seconds
User-mode sampling

Root access not
needed

Bytes
Binary Instrumentation
Counts operands size (not cachelines)

Roofs
Microbenchmarks
Actual peak for the
current configuration

AI = Flop/byte

Performance = Flops/seconds

Roofline application profile:

 Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

 Axis X: AI = #FLOP / #Bytes

Advisor Roofline: under the hood

33

Getting Roofline in Advisor

FLOP/S
= #FLOP/Seconds

Seconds #FLOP Count
- Mask Utilization
- #Bytes

Step 1: Survey
-  Non intrusive. Representative
-  Output: Seconds (+much more)

Step 2: FLOPS
-  Precise, instrumentation based
-  Physically count Num-Instructions
-  Output: #FLOP, #Bytes

Intel Confidential

34

Survey+FLOPs Report on AVX-512:
 FLOP/s, Bytes and AI, Masks and Efficiency

35

General efficiency (FLOPS) vs.
VPU-centric efficiency (Vector Efficiency)

High Vector Efficiency
Low FLOPS

Low Vector Efficiency
High FLOPS

36

Interpreting Roofline Data: advanced ROI
analysis.

Final Limits
(assuming perfect optimization)

Long-term ROI, optimization strategy

Current Limits
(what are my current bottlenecks)

Next step, optimization tactics

Finally compute-bound
Invest more into effective
CPU/VPU (SIMD)
optimization

Finally memory-bound
Invest more into
effective cache
utilization

Check your
Advisor Survey
and MAP results

•  advixe-cl -collect survey -project-dir ./your_project -no-auto-finalize -
search-dir src=./srcPath -search-dir bin=./binPath -- ./yourExecutable

•  advixe-cl -collect map -mark-up-list=10,12,15 -project-dir ./your_project -
search-dir bin=./binPath -search-dir src=./srcPath -- ./yourExecutable

•  advixe-cl -collect dependencies --project-dir ./your_project --loops="loop-
height=0,total-time>2" -- ./yourExecutable

•  advixe-cl -report survey -project-dir ./yourProject --search-dir src:r=./src

•  advixe-cl -collect survey -module-filter-mode=include -module-
filter=AnalyzeMyApp.exe,AnalyzeThisToo.dll -project-dir MyProject --
AnalyzeMyApp.exe

•  advixe-cl -collect survey -module-filter-mode=exclude -module-
filter=DoNotAnalyze.so -project-dir MyProject -- MyApplication

	

	

	

Intel Confidential 37

Command line usage

•  For 2017 Update 1
 (!) Requires env variable set before running command line or GUI:

 export ADVIXE_EXPERIMENTAL=roofline

•  Starting from 2017 Update 2

 Just available by default

Intel Confidential 38

Roofline access and how-to

(optional) > source advixe-vars.sh

(optional) > export ADVIXE_EXPERIMENTAL=roofline

> advixe-cl --collect survey –no-auto-finalize --project-dir ./your_project
-- <your-executable-with-parameters>

> advixe-cl --collect tripcounts -flops-and-masks --project-dir ./
your_project -- <your-executable-with-parameters>

> advixe-gui ./your_project

39

Roofline access and how-to
 command line example

1st pass
Obtain “Seconds”

1.1x overhead

2nd pass
Obtain #FLOP count:

 3x-5x overhead

FLOP/S =
#FLOP/Seconds

Launch GUI

